19/1/2016 Bitify: Interfacing a BMPO8S5 Digital Pressure sensor to the Raspberry Pi

|G| 3 Plus Blog suivant»

jlouette0305@gmail.com Tableau de bord Déconnex

Bitify

Tinkering with the Raspberry Pi and other geeky stuff

Sunday, 24 November 2013
Interfacing a BMPO85 Digital Pressure sensor to the Raspberry Pi
I recently bought a sensor with a BMP085 Digital Pressure sensor on it so I thought I'd write a post on how to read
the data from the Raspberry Pi in Python over I2C.
Python code
Below is simple test code to initialise the sensor and then continuously loop around reading the temperature and
air pressure.
001 | #!/usr/bin/python
002 | import smbus
003 | import time
004
005 | bus = smbus.SMBus(@) # or bus = smbus.SMBus(1) if you have a revision 2 board
006 | address = 0Ox77
007
008 | def read_byte(adr):
009 return bus.read_byte_data(address, adr)
010
011 | def read_word(adr):
012 high = bus.read_byte_data(address, adr)
013 low = bus.read_byte_data(address, adr+l)
014 val = (high << 8) + low
015 return val
016
017 | def read_word_2c(adr):
018 val = read_word(adr)
019 if (val >= 0x8000):
020 return -((Oxffff - val) + 1)
021 else:
022 return val
023
024 | def write_byte(adr, value):
025 bus.write_byte_data(address, adr, value)
026
027 | def twos_compliment(val):
028 if (val >= 0x8000):
029 return -((oOxffff - val) + 1)
030 else:
031 return val
032
033 | def get_word(array, index, twos):
034 val = (array[index] << 8) + array[index+1]
035 if twos:
036 return twos_compliment(val)
037 else:
038 return val
039
040 | def calculate():
041 # This code is a direct translation from the datasheet
042 # and should be optimised for real world use
043
044 #Calculate temperature
045 x1 = ((temp_raw - ac6) * ac5) / 32768
046 x2 = (mc * 2048) / (x1 + md)
047 b5 = x1 + x2
048 t = (b5 + 8) / 16
049
050 # Now calculate the pressure
051 b6 = b5 - 4000
852 x1 = (b2 * (b6 * b6 >> 12)) >> 11
053 X2 = ac2 * b6 >> 11
054 X3 = x1 + x2
055 b3 = (((acl * 4 + x3) << 0Ss) + 2) >> 2
056
057 x1 = (ac3 * b6) >> 13
958 x2 = (bl * (b6 * b6 >> 12)) >> 16
059 x3 = ((X1 + x2) + 2) >> 2
060 b4 = ac4 * (x3 + 32768) >> 15
061 b7 = (pressure_raw - b3) * (50000 >> oss)
062 if (b7 < 0x80000000):
063 p = (b7 * 2) /b4
064 else:
065 p = (b7 / b4) *2
066 x1 = (p >> 8) * (p >> 8)
067 x1 = (x1 * 3038) >> 16
068 x2 = (-7357 * p) >> 16
069 p=p+ ((Xx1 + x2 + 3791) >> 4)
070 return(t,p)
071
072 calibration = bus.read_i2c_block_data(address, OxAA, 22)
073
074 oss = 3 # Ultra high resolution
075 | temp_wait_period = 0.004
076 | pressure_wait_period = 0.0255 # Conversion time

Search

Search

Popular Posts

Interfacing Raspberry Pi
and MPU-6050

I wanted to interface my
Pi to a Six-Axis Gyro +
Accelerometer sensor
and the one I settled on was based on
a MPU-6050 chip. Iwent for thi...

Reading data from the

MPU-6050 on the
= Raspberry Pi

In a previous postI

showed how to connect
an Accelerometer & Gyro sensor to the
Raspberry Pi, in this post I'll show
some simple P...

Connecting and
calibrating a HMC5883L
Compass on the
Raspberry Pi

Here is how to connect a
HMC5883L Compass to the Raspberry
Pi, calibrate it and read the
data. Connecting the compass is
simple enough, fo...

e Using a complementary
filter to combine
Accelerometer and
Gyroscopic data

This post shows how to
combine data from the accelerometer
and gyroscope using a complementary
filter to produce a better readings
from the...

3D OpenGL visualisation
of the data from an MPU-

~ 6050 connected to a
Raspberry Pi

In this post I'll show how
to serve the data over http and display
a 3D representation in OpenGL
extending on a previous blog post
det...

Pitch, Roll and Yaw using
MPU6050 & HMC5883L
(with tilt compensation
and complementary
filter)

Combining the data from an MPU605
and a HMC5883L to give tilt
compensated pitch, roll and yaw.
Pitch, roll and yaw (with tilt
compensati...

g GY80 (L3G4200D,
ADXL345, HMC5883L,
BMP085) Python library
i for Raspberry Pi

A while back I bought a
GY80 board, which comprises of:
L3G4200D - Three axis Gyroscope
ADXL345 - Three axis accelerometer
HMC5883L - C...

, Temperature logging with
a DS18B20 and a
Raspberry Pi
I wanted to do some
temperature logging so I
hooked up a DS18B20 temperature
sensor to a Raspberry Pi. About the
DS18B20 Dallas DS18B...

http://blog bitify.co.uk/2013/11/interfacing-bmp085-digital-pressure.html

1/4

19/1/2016

077

078 | # The sensor has a block of factory set calibration values we need to read

079 | # these are then used in a length calculation to get the temperature and pressure
080 | acl = get_word(calibration, 0, True)

081 ac2 = get_word(calibration, 2, True)

082 | ac3 = get_word(calibration, 4, True)

083 | ac4 = get_word(calibration, 6, False)

084 | ac5 = get_word(calibration, 8, False)

085 ac6 = get_word(calibration, 10, False)

086 bl = get_word(calibration, 12, True)

087 | b2 = get_word(calibration, 14, True)

088 mb = get_word(calibration, 16, True)

089 mc = get_word(calibration, 18, True)

090 md = get_word(calibration, 20, True)

091

092

093 | while True:

094 # Read raw temperature

095 write_byte(0xF4, 0x2E) # Tell the sensor to take a temperature reading
096 time.sleep(temp_wait_period) # Wait for the conversion to take place

097 temp_raw = read_word_2c(0xF6)

098

099 write_byte(0xF4, 0x34 + (oss << 6)) # Tell the sensor to take a pressure reading
100 time.sleep(pressure_wait_period) # Wait for the conversion to take place
101 pressure_raw = ((read_byte(0xF6) << 16) \

102 + (read_byte(0xF7) << 8) \

103 + (read_byte(0xF8))) >> (8-0ss)

104

105

106 temperature, pressure = calculate()

107 print time.time(), temperature / 10., pressure / 100.

108 time.sleep(1)

To get a reading out of the sensor you first have to read the factory set calibration block (lines 080-090). This is
different for each device and is used in the lengthy calculations for both temperature and pressure. The function
calculate() is just a direct translation of the code presented in the datasheet, I don't understand what it's doing but
it gives us the required values.

Testing the sensor and the code

To test everything was working OK I saved the above code to a file called read-pressure.py, ran it and re-directed
the output to a file

sudo ./read-pressure.py > pressure-test.dat

I then slowly walked up and down the stairs in my house to get some data. Then plotted the data with the
following gnuplot program

set terminal wxt persist size 800,800 background '#000000'

set style line 99 linecolor rgb "#ffffff" linetype 0 linewidth 2
set key top right textcolor linestyle 99

set grid linestyle 99

set border linestyle 99

set yrange [16.4:17.2]
set y2range [1003.5:1005]
set y2tics

plot filename using 1:2 axes xlyl title "True temp" w 1 ,\
filename using 1:3 axes x1ly2 title "True pressure" w 1, \
filename using 1:3 axes x1ly2 title "Smoothed" smooth bezier

Here is the command to generate the plot below
gnuplot -e "filename='pressure-test.dat'" gnuplot-pressure.plg

You can see the pressure dropping as I went up the stairs and then back down again. You can see the temperature
went up slightly too which I think was just heat from my hand slowly raising it.

Bitify: Interfacing a BMPO8S5 Digital Pressure sensor to the Raspberry Pi

Interfacing a BMP085

Digital Pressure sensor to

the Raspberry Pi
I recently bought a

sensor with a BMP085

Digital Pressure sensor on it so I
thought I'd write a post on how to
read the data from the R...

Labels

T-wire (1)
ADXL345 (1)
BMPO085 (2)
DS18B20 (1)
gnuplot (3)
GY80 (1)
HMC5883L (3)
L3G4200D (1)
MPU-6050 (6)
OpenGL (2)
Python (8)
Raspberry Pi (8)
Raspbian (4)

temperature (1)

Blog Archive

» 2014 (2)
v 2013 (7)
» December (1)

¥ November (6)

Interfacing a BMP085
Digital Pressure sensor
to th...

Connecting and
calibrating a HMC5883L
Compass on t...

Using a complementary
filter to combine
Accelerome...

3D OpenGL visualisation
of the data from an
MPU-60...

Reading data from the
MPU-6050 on the
Raspberry Pi...

Interfacing Raspberry Pi
and MPU-6050

About Me

Andrew Birkett

View my complete
profile

http://blog bitify.co.uk/2013/11/interfacing-bmp085-digital-pressure.html

2/4

19/1/2016 Bitify: Interfacing a BMPO8S5 Digital Pressure sensor to the Raspberry Pi

Gnuplot (window id : 0)

1004.4

980 1000 1020

x=1011.81 y= 17.2139 y2= 1005.03

Sensor response as I walked up and down the stairs

To calculate altitude (height above ground) I used the first (pg) and the lowest (p) readings from the output and
plugged them into the following formula, again this is taken from the datasheet.

1

p 5.255

altitude =44330*|1-| —
Po

This gave me a height of 2.86m, I was surprised to get a significant reading by just walking up and down the stairs
so when I finally add it to a quad-copter I should get good results.

Posted by Andrew Birkett at 21:02

G+1| +3 Recommander ce contenu sur Google

Labels: BMP08S5, gnuplot, Python, Raspberry Pi

http://blog bitify.co.uk/2013/11/interfacing-bmp085-digital-pressure.html 3/4

19/1/2016 Bitify: Interfacing a BMPO8S5 Digital Pressure sensor to the Raspberry Pi

3 comments

- Add a comment as Julien Louette

Top comments

Andrew Birkett via Google+ 2 years ago - Shared publicly
Reading air pressure in Python on a #raspberrypi
1| - Reply

. ngc405 ngc405 2 years ago - Shared publicly
. Thank you for sharing your code

To avoid changing code when moving from Raspberry V1 to newer version (I got several, including red
ones), | changed line 5 above (bus = smbus.SMBus(0) # or bus = smbus.SMBus(1) if you have a
revision 2 board) to :

i
Andrew Birkett 2 years ago

Thanks for the code, I've just got a brand new pi which is a later revision so I'll test it out and then
update the code in the blog post.

Newer Post Home Older Post

Subscribe to: Post Comments (Atom)

Awesome Inc. template. Powered by Blogger.

http://blog bitify.co.uk/2013/11/interfacing-bmp085-digital-pressure.html 4/4

