
19/1/2016 Bitify: Using a complementary filter to combine Accelerometer and Gyroscopic data

http://blog.bitify.co.uk/2013/11/using-complementary-filter-to-combine.html 1/6

Tinkering with the Raspberry Pi and other geeky stuff

Bitify

Saturday, 16 November 2013

Using a complementary filter to combine Accelerometer and Gyroscopic
data

This post shows how to combine data from the accelerometer and gyroscope using a complementary filter to
produce a better readings from the MPU-6050.

The image above shows data for a negative rotation around the Y axis followed by a positive rotation around the X
axis. It includes the base accelerometer, gyroscope and the filtered data. Lets look at things in a bit more detail.

The following graph show a simple rotation in X of roughly 90-100 degrees (I didn't measure it accurately). The red
line shows the accelerometer data and as we can see from the spikes it's a noisy data set. The green line show the
rotation angle calculated from summing the individual angles read from the gyroscope. While this data is less
noisy it is prone to drift over time, the gyroscope doesn't return back to zero when not moving.

Complementary filter

Search

Interfacing Raspberry Pi
and MPU-6050
I wanted to interface my
Pi to a Six-Axis Gyro +
Accelerometer sensor

and the one I settled on was based on
a MPU-6050 chip. I went for thi...

Reading data from the
MPU-6050 on the
Raspberry Pi
In a previous post I
showed how to connect

an Accelerometer & Gyro sensor to the
Raspberry Pi, in this post I'll show
some simple P...

Connecting and
calibrating a HMC5883L
Compass on the
Raspberry Pi
Here is how to connect a

HMC5883L Compass to the Raspberry
Pi, calibrate it and read the
data. Connecting the compass is
simple enough, fo...

Using a complementary
filter to combine
Accelerometer and
Gyroscopic data
This post shows how to

combine data from the accelerometer
and gyroscope using a complementary
filter to produce a better readings
from the...

3D OpenGL visualisation
of the data from an MPU-
6050 connected to a
Raspberry Pi
In this post I'll show how

to serve the data over http and display
a 3D representation in OpenGL
extending on a previous blog post
 det...

Pitch, Roll and Yaw using
MPU6050 & HMC5883L
(with tilt compensation
and complementary
filter)

Combining the data from an MPU605
and a HMC5883L to give tilt
compensated pitch, roll and yaw.
Pitch, roll and yaw (with tilt
compensati...

GY80 (L3G4200D,
ADXL345, HMC5883L,
BMP085) Python library
for Raspberry Pi
A while back I bought a

GY80 board, which comprises of:
L3G4200D - Three axis Gyroscope
ADXL345 - Three axis accelerometer
HMC5883L - C...

Temperature logging with
a DS18B20 and a
Raspberry Pi
I wanted to do some
temperature logging so I

hooked up a DS18B20 temperature
sensor to a Raspberry Pi. About the
DS18B20 Dallas DS18B...

Popular Posts

19 Plus Blog suivant» jlouette0305@gmail.com Tableau de bord Déconnexion

19/1/2016 Bitify: Using a complementary filter to combine Accelerometer and Gyroscopic data

http://blog.bitify.co.uk/2013/11/using-complementary-filter-to-combine.html 2/6

The blue line shows the complementary filter at work. It combines the two data sets by merging fast rotations
from the gyroscope with the slower trends from the accelerometer and we get the best of both worlds. For a full
explanation of the theory behind this type of filter I recommend reading this excellent paper. If you just want
some simple code then read on.

The interesting parts are lines 76 to 91.

01 #!/usr/bin/python
02
03 import smbus
04 import math
05 import time
06
07 # Power management registers
08 power_mgmt_1 = 0x6b
09 power_mgmt_2 = 0x6c
10
11 gyro_scale = 131.0
12 accel_scale = 16384.0
13
14 address = 0x68 # This is the address value read via the i2cdetect command
15
16 def read_all():
17 raw_gyro_data = bus.read_i2c_block_data(address, 0x43, 6)
18 raw_accel_data = bus.read_i2c_block_data(address, 0x3b, 6)
19
20 gyro_scaled_x = twos_compliment((raw_gyro_data[0] << 8) + raw_gyro_data[1]) /

gyro_scale
21 gyro_scaled_y = twos_compliment((raw_gyro_data[2] << 8) + raw_gyro_data[3]) /

gyro_scale
22 gyro_scaled_z = twos_compliment((raw_gyro_data[4] << 8) + raw_gyro_data[5]) /

gyro_scale
23
24 accel_scaled_x = twos_compliment((raw_accel_data[0] << 8) + raw_accel_data[1]) /

accel_scale
25 accel_scaled_y = twos_compliment((raw_accel_data[2] << 8) + raw_accel_data[3]) /

accel_scale
26 accel_scaled_z = twos_compliment((raw_accel_data[4] << 8) + raw_accel_data[5]) /

accel_scale
27
28 return (gyro_scaled_x, gyro_scaled_y, gyro_scaled_z, accel_scaled_x,

accel_scaled_y, accel_scaled_z)
29
30 def twos_compliment(val):
31 if (val >= 0x8000):
32 return ‐((65535 ‐ val) + 1)
33 else:
34 return val
35
36 def dist(a, b):
37 return math.sqrt((a * a) + (b * b))
38
39
40 def get_y_rotation(x,y,z):
41 radians = math.atan2(x, dist(y,z))
42 return ‐math.degrees(radians)
43
44 def get_x_rotation(x,y,z):
45 radians = math.atan2(y, dist(x,z))
46 return math.degrees(radians)
47
48 bus = smbus.SMBus(0) # or bus = smbus.SMBus(1) for Revision 2 boards
49

Interfacing a BMP085
Digital Pressure sensor to
the Raspberry Pi
I recently bought a
sensor with a BMP085

Digital Pressure sensor on it so I
thought I'd write a post on how to
read the data from the R...

1-wire (1)

ADXL345 (1)

BMP085 (2)

DS18B20 (1)

gnuplot (3)

GY80 (1)

HMC5883L (3)

L3G4200D (1)

MPU-6050 (6)

OpenGL (2)

Python (8)

Raspberry Pi (8)

Raspbian (4)

temperature (1)

Labels

► 2014 (2)

▼ 2013 (7)

► December (1)

▼ November (6)

Interfacing a BMP085
Digital Pressure sensor
to th...

Connecting and
calibrating a HMC5883L
Compass on t...

Using a complementary
filter to combine
Accelerome...

3D OpenGL visualisation
of the data from an
MPU-60...

Reading data from the
MPU-6050 on the
Raspberry Pi...

Interfacing Raspberry Pi
and MPU-6050

Blog Archive

Andrew Birkett

View my complete
profile

About Me

19/1/2016 Bitify: Using a complementary filter to combine Accelerometer and Gyroscopic data

http://blog.bitify.co.uk/2013/11/using-complementary-filter-to-combine.html 3/6

First we read all the scaled data from the device.

Adjust the gyroscope data by the offset.

The offset is the value of the gyroscope reading when it's not moving and is taken from the very first reading. This

is fine for simple testing but ideally a true offset value should be determined by calibrating the sensor.

Now calculate the gyroscope delta, this is how much the sensor has rotated since the last sample was taken and

then add it to a running total

This gives us a rotation angle just from reading from the gyroscope (the green line in the graph above)

Next read the rotation values from the accelerometer just like we did in the previous post

Now the complementary filter is used to combine the data.

We take the previous readings (last_x, last_y) and add in the gyroscope data then scale this by K, then add in the

accelerometer data scaled by K1 and this value is our new angle. The coefficients K and K1 should add up to 1, in

this case they are 0.98 and 0.02 respectively. You can change the values of K and K1 to suit your application as

described in the previously linked article. The time intervals for the loop needs to be reasonably accurate for this to

work well and the sample rate should be 100Hz or higher.

If you run the code and direct the output to a file

 sudo ./filter-test.py > plot.dat

you can then generate gnuplot diagrams similar to those above, save the following to a file gnuplot-command.plg

 set terminal wxt persist size 800,600 background '#000000' # enhanced font 'Consolas,10'

 set style line 99 linecolor rgb "#ffffff" linetype 0 linewidth 2

 set key top right textcolor linestyle 99

50 # Now wake the 6050 up as it starts in sleep mode
51 bus.write_byte_data(address, power_mgmt_1, 0)
52
53 now = time.time()
54
55 K = 0.98
56 K1 = 1 ‐ K
57
58 time_diff = 0.01
59
60 (gyro_scaled_x, gyro_scaled_y, gyro_scaled_z, accel_scaled_x, accel_scaled_y,

accel_scaled_z) = read_all()
61
62 last_x = get_x_rotation(accel_scaled_x, accel_scaled_y, accel_scaled_z)
63 last_y = get_y_rotation(accel_scaled_x, accel_scaled_y, accel_scaled_z)
64
65 gyro_offset_x = gyro_scaled_x
66 gyro_offset_y = gyro_scaled_y
67
68 gyro_total_x = (last_x) ‐ gyro_offset_x
69 gyro_total_y = (last_y) ‐ gyro_offset_y
70
71 print "{0:.4f} {1:.2f} {2:.2f} {3:.2f} {4:.2f} {5:.2f} {6:.2f}".format(time.time() ‐

now, (last_x), gyro_total_x, (last_x), (last_y), gyro_total_y, (last_y))
72
73 for i in range(0, int(3.0 / time_diff)):
74 time.sleep(time_diff ‐ 0.005)
75
76 (gyro_scaled_x, gyro_scaled_y, gyro_scaled_z, accel_scaled_x, accel_scaled_y,

accel_scaled_z) = read_all()
77
78 gyro_scaled_x ‐= gyro_offset_x
79 gyro_scaled_y ‐= gyro_offset_y
80
81 gyro_x_delta = (gyro_scaled_x * time_diff)
82 gyro_y_delta = (gyro_scaled_y * time_diff)
83
84 gyro_total_x += gyro_x_delta
85 gyro_total_y += gyro_y_delta
86
87 rotation_x = get_x_rotation(accel_scaled_x, accel_scaled_y, accel_scaled_z)
88 rotation_y = get_y_rotation(accel_scaled_x, accel_scaled_y, accel_scaled_z)
89
90 last_x = K * (last_x + gyro_x_delta) + (K1 * rotation_x)
91 last_y = K * (last_y + gyro_y_delta) + (K1 * rotation_y)
92
93 print "{0:.4f} {1:.2f} {2:.2f} {3:.2f} {4:.2f} {5:.2f} {6:.2f}".format(

time.time() ‐ now, (rotation_x), (gyro_total_x), (last_x), (rotation_y),
(gyro_total_y), (last_y))

1 (gyro_scaled_x, gyro_scaled_y, gyro_scaled_z, accel_scaled_x, accel_scaled_y,
accel_scaled_z) = read_all()

1 gyro_scaled_x ‐= gyro_offset_x
2 gyro_scaled_y ‐= gyro_offset_y

1 gyro_x_delta = (gyro_scaled_x * time_diff)
2 gyro_y_delta = (gyro_scaled_y * time_diff)
3
4 gyro_total_x += gyro_x_delta
5 gyro_total_y += gyro_y_delta

1 rotation_x = get_x_rotation(accel_scaled_x, accel_scaled_y, accel_scaled_z)
2 rotation_y = get_y_rotation(accel_scaled_x, accel_scaled_y, accel_scaled_z)

1 last_x = K * (last_x + gyro_x_delta) + (K1 * rotation_x)
2 last_y = K * (last_y + gyro_y_delta) + (K1 * rotation_y)

19/1/2016 Bitify: Using a complementary filter to combine Accelerometer and Gyroscopic data

http://blog.bitify.co.uk/2013/11/using-complementary-filter-to-combine.html 4/6

27 comments

Top comments

James Smith 5 months ago - Shared publicly

awesome do you have the equivalent in C?

 ·

View all 4 replies

1 Reply

Have you installed the gnuplot application ? It isn't usually installed by default in Linux.
Andrew Birkett 5 months ago

Yes I did
James Smith 5 months ago

anshul sanam 1 year ago - Shared publicly

Great tutorial, I am doing this on a Beaglebone Black and it works well, but is it possible to make the

values smoother, because the the values seem to "jitter" a lot for me.

+1
2

1

Andrew Birkett via Google+ 2 years ago - Shared publicly

#RaspberryPi

 ·

1 Reply

Lucas Leite 4 months ago - Shared publicly

Andrew, thank you.

I learned a lot by these series of articles on the MPU6050.

It was very insightful and taught me a lot on digital filters

 ·

1 Reply

Doug Blanding 11 months ago - Shared publicly

You have done a really nice job on this series covering the MPU-6050. The one thing I discovered (that

wasn't explained) was that I needed to install gnuplot-x11.

 ·

1 Reply

Add a comment as Julien Louette

Posted by Andrew Birkett at 23:11

Labels: gnuplot, MPU-6050, Python, Raspberry Pi

 set grid linestyle 99

 set border linestyle 99

 set xlabel "time (s)" textcolor linestyle 99

 set ylabel "degrees" textcolor linestyle 99

 set yrange [-180:180]

 plot filename using 1:2 title "Accelerometer X" with line linewidth 2 , \

 filename using 1:3 title "Gyroscope X" with line linewidth 2 , \

 filename using 1:4 title "Filter X" with line linewidth 2

 plot filename using 1:5 title "Accelerometer Y" with line linewidth 2 , \

 filename using 1:6 title "Gyroscope Y" with line linewidth 2 , \

 filename using 1:7 title "Filter Y" with line linewidth 2

then to generate a graph

 gnuplot -e "filename='plot.dat'" gnuplot-command.plg

In the next post I show how to hook up a HMC5883L Compass module and incorporate it into the code so we can

get a true bearing. Well that is when I get a new one as I seem to have fried mine.

+19 Recommander ce contenu sur Google

19/1/2016 Bitify: Using a complementary filter to combine Accelerometer and Gyroscopic data

http://blog.bitify.co.uk/2013/11/using-complementary-filter-to-combine.html 5/6

Tim Rackers 1 year ago - Shared publicly

In regards to the theory behind the complementary filter, you included a link to find the paper that
explains the process, "this excellent paper". However, the link isn't currently working and I was hoping
that you could reply with a link to the paper.

Thanks,
Tim

 ·

1 Reply

Thanks for pointing out the link isn't working, I managed to track another copy
down https://googledrive.com/host/0B0ZbiLZrqVa6Y2d3UjFVWDhNZms/filter.pdf I'll update the
blog to link to this new version

Andrew Birkett 1 year ago

Thanks!
Tim Rackers 1 year ago

bernardo jaccoud 8 months ago - Shared publicly

Great tutorial. I've used a lot of your code so let me thank you in advanced. However, I have a question,
why did you use the range that you did in the "for" loop? Thank you.

 ·

1 Reply

It was a little bit arbitrary, i think I just found the values gave reasonable results for demonstration
purposes.

Andrew Birkett 8 months ago

Josse Pyfferoen 9 months ago - Shared publicly

Nice code!
I just don't get the twos_complement function.
What is the meaning of the 0x8000?

 ·

View all 5 replies

1 Reply

+Andrew Birkett
Thank you for answering!
(probably) last question: why do you put a - (line 42) in get y rotation?

Josse Pyfferoen 8 months ago

+Josse Pyfferoen To be honest I can't remember, I'm guessing the data was coming out with the
signed flipped so I just flipped it back.

Andrew Birkett 8 months ago

Andrew Huff 11 months ago - Shared publicly

Hi, thanks for this guide. I'm planning on using it soon but before I start, could you give me an idea as to
how much of the CPU running this uses? It's just that the rpi will be doing other things while this is
running and I'm worried that it will cause a lag in those tasks. Hopefully it's not CPU intensive. Thanks!

1

Kieran Cranley 1 year ago - Shared publicly

Hi Andrew - I'm a newbie, but I did manage to get the MPU-6050 working with your python programs. I
haven't tried OpenGL visualisation on my Windows PC but it sounds like it isn't possible.

What I wanted to ask you, is - do you have any python code that would allow output from the 6050 to
drive a pair of servos?

 ·

View all 4 replies

1 Reply

Hi Andrew - I'm making some progress with servos etc, but in the meantime, I just wanted to ask
you if the angles above which you are calculating for the accelerometer - get_x_rotation(x,dist(y,z))
and get_y_rotation(y, dist(x,z)) are angles between the vector R and the x and y axes, rather than
the angles calculated for the gyro. Should they not be the exact same angles for inputting to the
filter?

Sparks N Smoke 1 year ago

+Andrew Birkett Me again Andrew - I have the servos going - you can see the post on my
blog: http://smokespark.blogspot.co.uk/2015/01/61-exploring-pi-bs-ports-vii.html
Kieran

Sparks N Smoke 1 year ago

Roberto Montiel Camargo 11 months ago - Shared publicly

thanks for this great post, I'm trying to occupy the MPU6050 to measure the displacement of a car
shock absorbers, how I can do to make me scroll instead of angular rotation?

19/1/2016 Bitify: Using a complementary filter to combine Accelerometer and Gyroscopic data

http://blog.bitify.co.uk/2013/11/using-complementary-filter-to-combine.html 6/6

Newer Post Older PostHome

Subscribe to: Post Comments (Atom)

 · 1 Reply

Awesome Inc. template. Powered by Blogger.

